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Abstract. A theory for the voltage-current characteristic in high TC DC SQUIDs (Superconducting Quan-
tum Interference Devices), which accounts for a second harmonic in the junction current-phase relation,
is developed. It is shown that the small inductance DC SQUIDs can be used for the investigation of the
second harmonic via its influence on the voltage-flux curve. If the second harmonic is perceptible, then for
large inductance DC SQUIDs the theory can explain the substantial deviations of the experimental volt-
age modulation from theoretical predictions and computer simulations based on conventional sinusoidal
current-phase relation. The detail comparison with the experiment is performed.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 85.25.-j
Superconducting devices – 85.25.Dq Superconducting quantum interference devices (SQUIDs)

1 Introduction

As is well known, there exists a significant discrep-
ancy between experimental results and numerical simu-
lations of the voltage-to-flux transfer function of high TC

DC SQUIDs [1,2]. This is one of the most important un-
solved problems, which seriously hinders the optimization
of high TC DC SQUIDs for applications.

In spite of extensive computer simulations [1,3] and
theoretical studies [4–6] that have been performed in the
attempt to predict reliably transfer function and energy
resolution of high TC DC SQUIDs, a marked disagree-
ment with experiment still exists: experimental transfer
functions in many cases are much lower than the values
predicted by theory and computer simulations; the white
noise is about ten times higher than predicted.

One of the possible reasons for these discrepan-
cies could be attributed to the junction asymmetry of
SQUID interferometer (unequal critical currents or (and)
normal resistances), which for grain boundary junctions
is about 20%–30% due to on chip technological hetero-
geneity. However, the junction asymmetry can explain
only small deviations from theoretical curves [3,7]. As was
shown in [6], the junction asymmetry always results in the
increase of the voltage modulation if the junction critical
current is greater than approximately 5 µA. Therefore,
the majority of experimental points, cannot be explained
by the junction asymmetry.
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Therefore, the problem of large reduction of transfer
function and the voltage modulation relative to theoretical
predictions is still open.

The other possible reason for aforementioned devia-
tions, which is investigated in the paper, is the influence
of a second harmonic in the current-phase relation (CPR)
of a high temperature superconducting Josephson junc-
tion on the voltage modulation in high TC DC SQUID.

It is well established now that the CPR in high TC

junctions is non-sinusoidal, possessing a second harmonic
component whose relative magnitude depends on mutual
orientation of the d-wave superconductors, and whose sign
can be temperature dependent [8–10]:

IS = I1 sin ϕ + I2 sin 2ϕ, (1)

where IS is a supercurrent flowing through the junc-
tion, ϕ is a phase difference of the superconducting or-
der parameter across the junction. The amplitude of
the first harmonic I1 depends on the relative orientation
of d-wave superconductors. In asymmetric 45◦ [001]-tilt
grain boundary junction the amplitude I1 is expected to
disappear due to symmetry [11]. In this case the am-
plitude I2 becomes prominent, and has been observed
in direct CPR measurements [12,13], and as a half-
flux quantum periodicity of critical current in YBCO
DC SQUIDs [14].

More recent studies revealed a substantial amount of a
second harmonic also in [001]-tilt grain boundary junction
with a 30◦ asymmetric misorientation angle [15].
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In the present paper we investigate the effect of a
second harmonic on the voltage-current characteristics
(VCC) and on the voltage-flux curves (VFC) of high TC

DC SQUID.
We consider a symmetrical DC SQUID interferometer

with nominally equal shunt resistances, R1 = R2 = R,
and with equal amplitudes of each harmonics:

I
(1)
1 = I

(2)
1 ≡ I1; I

(1)
2 = I

(2)
2 ≡ I2, (2)

where the superscripts refer to the junction number.
The paper is organized as follows. In the Section 2

we consider the DC SQUID with a low geometrical in-
ductance of the interferometer loop. In the approximation
of Ambegaokar and Halperin we obtain analytical expres-
sions for the voltage-flux curves. It is shown that the sec-
ond harmonic results in characteristic distortion of the
VFC. In particular, if the first harmonic is absent, the
VFC has the half-flux quantum periodicity.

The Section 3 is devoted to DC SQUID with large in-
ductance of the interferometer loop. In the frame of the
approach that has been developed earlier [5] we obtain
the analytical expression for the VCC which accounts for
the influence of the second harmonic. The principal re-
sult of the theory is that the admixture of the second
harmonic results in the increase of the critical current of
DC SQUID and simultaneously in the reduction of the
voltage modulation.

The detail comparison of the theory with experiment is
given in the Section 4. It is shown that a significant reduc-
tion of the modulation signal observed experimentally can
be explained by the perceptible admixture of the second
harmonic in CPR.

2 DC SQUID with small inductance

First detail experimental investigation of the influence of
second harmonic on the dynamic behavior of small in-
ductance YBCO DC SQUID with asymmetric 45◦ grain
boundary junctions was performed in [16]. It was shown
that the peculiarities in the dependence of critical current
on the external flux can be explained by the large amount
of second harmonic in the junction CPR.

In this section we obtain the analytical expression for
the output voltage of small inductance DC SQUID, which
allows one to investigate the SQUID properties in a broad
range of temperatures, and of the amplitudes I1 and I2.

Neglecting the inductance of the loop we can write the
energy of DC SQUID loop in the external magnetic field:

U = −EJ (iϕ + 2 cosϕX cosϕ + γ cos 2ϕX cos 2ϕ) , (3)

where EJ = Φ0I1/2π is the Josephson coupling energy,
i = I/I1, I is the bias current, ϕX = πΦX/Φ0, ΦX is
the external magnetic flux, Φ0 = h/2e is a flux quantum,
γ = I2/I1.

As is known, DC SQUID with a negligible small in-
ductance can be considered as a single Josephson junc-
tion with normal resistance R/2 and doubled critical

current. Therefore, we may use the known approach of
Ambegaokar and Halperin [17] to account for a second har-
monic in the voltage current characteristic of such SQUID
at finite temperature:

V

RI1
=

πΓ

p (i, Γ, ϕX)
(4)

where Γ = 2πkBT/Φ0I1 is the noise parameter, T is the
absolute temperature,

p (i, Γ, ϕX) =


2π∫

0

e−W (y)dy

y∫

0

eW (x)dx− 1

1−e

2πi

Γ

2π∫

0

eW (x)dx

2π∫

0

e−W (x)dx




(5)

W (x) =
(i/Γ ) x + (2/Γ ) cosϕX cosx + (γ/Γ ) cos 2ϕX cos 2x.

(6)

The expression (4) is valid for any temperature below TC ,
the critical temperature of a superconductor, however,
all calculations we show below have been performed for
T = 77 K.

The equation (4) is a good approximation for
DC SQUIDs with α � 1, β � 1, where α = L/LF ,
LF = (Φ0/2π)2/kBT is a fluctuation inductance which
is equal to 100 pH at T = 77 K, β = 2LI1/Φ0. Therefore,
in general, SQUID behavior is described by three parame-
ters, α, β, Γ , but only two are independent due to relation
α = πβΓ .

The voltage-flux curves (VFC) calculated from the
expression (4) are shown in Figure 1. As is seen, the pres-
ence of a second harmonic gives rise to the half-flux quan-
tum periodicity of VFC. It also implies the voltage in-
variance under reversal of the sign of I2. In addition, the
second harmonic reduces the modulation depth. There-
fore, the purposely made DC SQUID with small induc-
tance (α � 1, β � 1) can be a convenient device for the
investigation of the second harmonic in high TC supercon-
ductors via its influence on the voltage-flux characteristic.

3 DC SQUID with large inductance

As is well known the high TC DC SQUIDs, which are
used in practical SQUID systems, have large geometrical
inductance of interferometer loop, typically L > 100 pH.

Therefore, in this section we consider a DC SQUID
with large inductance, α ≥ 1 and any β and Γ consistent
with the relation α = πβΓ . The theory of the voltage-
current characteristics for such SQUID has been developed
earlier [5]. Here we apply this theory to a SQUID with the
second harmonic in junctions CPR. According to the ap-
proach of [5] we have obtained the following result for the
voltage across a SQUID with a second harmonic in CPR:

V

RI1
= J − exp (−α/2) cos(2ϕX)f(i, Γ, γ) (7)
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Fig. 1. Voltage-flux curves for small inductance DC SQUID
calculated from equation (4). (solid square)- I1 = 10 µA, I2 = 0
(2nd harmonic is absent), i = I/I1 = 1.5; (solid circle)- I1 =
10 µA, I2 = 10 µA, i = I/I1 = 1.5; (cross)- I1 = 0, I2 = 10 µA
(1st harmonic is absent), i = I/I2 = 1.5.

where

J−1 = 2i

n=+∞∑
n=−∞

(−1)n
G+

n G−
n

i2 + 4n2Γ 2
(8)

f(i, Γ, γ) = 8J3
[
i2A (A + C) − 4Γ 2B (D − B)

]
(9)

A =
n=+∞∑
n=−∞

(−1)n
G+

n+1G
−
n

i2 + 4n2Γ 2
(10a)

C =
n=+∞∑
n=−∞

(−1)n
G+

n G−
n+1

i2 + 4n2Γ 2
(10b)

B =
n=+∞∑
n=−∞

(−1)n nG+
n+1G

−
n

i2 + 4n2Γ 2
(10c)

D =
n=+∞∑
n=−∞

(−1)n
nG+

n G−
n+1

i2 + 4n2Γ 2
(10d)

G±
n =

m=+∞∑
m=−∞

(±1)m
In−2m (1/Γ ) Im (γ/Γ ), (11)

where In is a modified Bessel function.
The voltage modulation ∆V = V (ϕX = π/2) −

V (ϕX = 0) is readily obtained from (7):

∆V

RI1
= 2 exp (−α/2) f(i, Γ, γ). (12)

The expression (7) is valid for α ≥ 1 and any values of β
and Γ , which are consistent with the condition α = πβΓ .
Therefore, it can be applied for the analysis of a majority
of practical high TC DC SQUIDs with Γ ≈ 0.05−1, β ≥ 1,
α ≥ 1. However, it should be remembered that (7) is the
approximate expression which accounts for the first order

Fig. 2. Voltage-current curves for large inductance DC SQUID
calculated from equation (7). L = 2LF, ΦX = 0, γ = I2/I1;
(solid square)- I1 = 20 µA, I2 = 0; (open circle)- I1 = 20 µA,
I2 = 0.3 I1; (open triangle)- I2 = 20 µA, I1 = 0.3 I2.

term in the perturbation expansion of the voltage over
small parameter ε = exp(−α/2) (see [5]).

Contrary to the case of zero inductance (expres-
sion (4)), here VCC (7) is not invariant under sign rever-
sal of I2 since magnetic energy term in the Hamiltonian
of DC SQUID, (Φ − ΦX)2/2L, destroys the invariance.
Indeed, as follows from (11), G±

n (−γ) = G∓
n (γ), then,

the quantities in (7) transforms as follows: J → J, A →
C, C → A, B → D, D → B. Therefore, f(i, Γ,−γ) �=
f(i, Γ, γ). However, for large inductance (α ≥ 1) the VCC
is approximately invariant under sign reversal of I2 since
the second term in right hand side of (7) is much smaller
than the first one.

If the second harmonic is absent (γ = 0), then, we have
G±

n = In(1/Γ ), C = A, D = B, and we get the result ob-
tained in [5] for symmetric DC SQUID with conventional
CPR.

It is interesting to note that if the first harmonic is
absent (I1 = 0), then the voltage modulation is, within our
approximation, exactly equal to zero. It follows from (11)
that for I1 = 0

G±
n =

{
(±1)n/2 In/2 (γ/Γ ) for n even
0 for n odd.

(13)

Then, from (10) we have A = C = D = B = 0. Therefore,
the modulation signal (the second term in (7)) is absent
in this case. Of course, it is not a strong statement, since
the expression (7) accounts only for the first order term
in the perturbation expansion of the voltage over small
parameter ε = exp(−α/2). However, from these consider-
ations we can expect a significant reduction of the voltage
modulation if the second harmonic is perceptible.

The influence of the second harmonic on the voltage-
current curve (VCC) is shown in Figure 2. We see that
the second harmonic enhances the SQUID critical cur-
rent. The more the amplitude of the second harmonic the
more is the enhancement of the critical current. As is seen
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Fig. 3. The reduced voltage modulation vs. bias current
curves in the absence of the second harmonic (calculated from
Eq. (12)). (solid square)- I1 = 10 µA; (solid circle)- I1 = 20 µA;
(solid triangle)- I1 = 30 µA.

from Figure 2, for given value of the sum, I1 +I2, the crit-
ical current is greatly enhanced, if the second harmonic is
perceptible.

As is seen from (12) the influence of inductance on
the voltage modulation is factored out, so that below we
consider the reduced modulation exp(α/2)∆V/R, which
depends on the bias current I and harmonic amplitudes I1

and I2.
In the absence of the second harmonic (I2 = 0) the re-

duced voltage modulation vs. current curves, ∆V (I) have
the form as shown in Figure 3. For a given junction crit-
ical current I1 the curve has a well defined maximum
∆V (IMAX) = ∆VMAX at the corresponding value of the
bias current I = IMAX.

Our calculations show that the admixture of a sec-
ond harmonic independently of its sign reduces the volt-
age modulation as is seen from Figure 4. A significant
reduction is obtained only if the amplitude of the sec-
ond harmonic is several times that of the first harmonic.
However, the forms of the curves are similar to those for
γ = 0: on the bias current axes they have one maximum,
which position is shifted to lower bias currents for rela-
tively small admixture of the second harmonic, and to the
higher bias currents if the amount of the second harmonic
is significant.

For the practical purpose it is convenient to have a
set of the values of maximum voltage modulation ∆VMAX

with a corresponding values of the bias current IMAX. Just
these two quantities can easily be measured in practice:
by varying the bias current the point of maximum voltage
modulation ∆VMAX is being obtained at particular value
of bias current I = IMAX.

From equation (12) for a set of two fixed values, I1

and γ we computed a set of the values of maximum volt-
age modulation ∆VMAX with a corresponding values of
bias current IMAX. The dependences ∆VMAX(IMAX) are
shown for several γ′-s in Figure 5. The different points on

Fig. 4. The influence of the second harmonic on the voltage
modulation. (solide square)- I1 = 20 µA, I2 = 0; (open circle)-
I1 = 15 µA, I2 = 5 µA; (open triangle)- I1 = 15 µA, I2 =
−5 µA; (open stars) I1 = 5 µA, I2 = 15 µA; (*)- I1 = 5 µA,
I2 = −15 µA.

Fig. 5. The dependence of maximum voltage modulation on
the bias current. The influence of second harmonic. (solid
square)- I2 = 0; (open triangle)- I2/I1 = 0.1; (open circle)-
I2/I1 = −0.1; (open square) I2/I1 = 0.3; (open stars)- I2/I1 =
−0.3; (left corner open triangle)- I2/I1 = 0.5; (right corner
open triangle)- I2/I1 = −0.5; (solid stars)- I2/I1 = 2; (solid
circle)- I2/I1 = 3.3; (solid triangle)- I2/I1 = 10.

a particular curve belong to different values of I1 in the
range 5 µA ≤ I1 ≤ 50 µA. As it follows from Figure 5,
a relative small portion of the second harmonic gives rise
to a relative small reduction of the voltage modulation as
compared to that for the conventional CPR. A substan-
tial reduction is obtained only if the second harmonic is
strongly pronounced. The reduction of the voltage modu-
lation is not invariant under the change of the sign of γ.
As is seen from Figure 5, the reduction for positive γ′-s is
more pronounced.



Ya.S. Greenberg et al.: The influence of the second harmonic... 61

4 Comparison with experiment

In order to compare our theory with experiment we took
a couple of DC SQUIDs with α ≥ 1 and Γ ≥ 0.05 out
of those which have been chosen before for the same pur-
pose [7]. All of these SQUIDs are single layer ones, us-
ing 100 or 200 nm thick YBa2Cu3O7−x films deposited by
laser ablation onto SrTiO3 bicrystal substrates with 24◦ or
30◦ misorientation angles, both having symmetrical con-
figuration. The technology is described in detail in [18].
The SQUID layouts cover small SQUIDs either used
solo [19] or directly coupled to a pickup loop [20]. In any
case, the investigated SQUIDs are formed by slim loops
as shown in Figure 6.

All measurements were performed in liquid nitrogen
at 77 K.

The experimental results shown in Figures 7a, b are
drawn with error bars, representing the uncertainties of
the measurements. Maximum voltage modulation ∆VMAX

and corresponding bias current, IMAX, are measured di-
rectly. Therefore, their errors amount to maximum 0.5 µV
and 0.5 µA, respectively. The normal resistance R was de-
termined by fitting the VCC at high currents. The error is
as low as 0.1 Ω. In the parameter α = L/LF the fluctua-
tion inductance LF is exact, but the SQUID inductance L
may contain errors.

Only the kind of SQUID shown in Figure 6 is included
in the results shown in Figures 7a, b. This SQUID type
is at the very end intended to be used for direct cou-
pling of a pickup loop. Here the fraction kL, where some
injection current Ii flows around the SQUID loop, can
be determined directly by measurement with the expres-
sion kL = Φ0/Ii. Here Ii is that injection current which
is needed to produce one modulation period, thus repre-
senting one Φ0, in the voltage-flux curve. Then, kL was
calculated by a numerical method described in [21]. For
theses calculations, the geometry is given and the actual
YBCO thickness is used. Because the calculation also in-
cludes the kinetic inductance, the free fitting parameter
is the London penetration depth. Its value has to be con-
stant for any SQUID on the same substrate. There were
always five or more SQUIDs on each substrate, mostly
having different layout (slit length, rim width). The de-
viation between measured and calculated kL was always
below 10% for all the different layouts. Therefore, also the
complete SQUID inductance L, calculated with the same
parameters, will be within this error margin.

As is seen from Figure 7a, most of experimental points
lie well below the curve for DC SQUID with conven-
tional CPR. Out of them, only few would need a very
strong contribution of the second harmonics in order
to explain their extremely low voltage modulation (see
Fig. 7b). Most of the experimental data could be explained
by a moderate contribution of the second harmonics in
the CPR. There is no remarkable difference between the
SQUIDs using 24◦ or 30◦ bicrystals.

Yet, there exist few experimental points which lie
above the conventional CPR curve. Our theory cannot ex-
plain these points, since the admixture of the second har-
monic always leads to the reduction of the voltage modu-

 

Fig. 6. Layout of the investigated SQUIDs. The SQUIDs are
formed by a slim loop, using grain boundary junctions. Slit
length and rim width are varied. I,V denote the terminals for
the SQUID characterization. An injection current Ii is fed into
the loop. The black crook denotes the coupling inductance kL;
the grey loop-the whole SQUID inductance L.

Fig. 7a. Experimental voltage modulation for YBCO grain
boundary junctions with symmetric misorientation angles
(cross- 24◦, open square- 30◦). The conventional CPR
curve (I2 = 0), which is shown by solid squares, denotes
the upper bound for the voltage modulation of symmetric
DC SQUID.

lation. Looking for any other possible parameter which
could enhance the voltage modulation, asymmetry be-
tween the two Josephson junctions of the SQUID could
be taken into account. In [6] it was shown that for rela-
tively large critical current of the junction (≥5 µA) the
junction asymmetry always leads to an enhancement of
the voltage modulation. With a typical critical current
spread of about 30% of our junctions on one bicrystal
substrate [22] such extraordinarily high modulation val-
ues should be explainable.
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Fig. 7b. Experimental voltage modulation for YBCO grain
boundary junctions with symmetric misorientation angles
(cross- 24◦, snowflake- 30◦). The conventional CPR curve (I2 =
0), which is shown by solid squares, denotes the upper bound
for the voltage modulation of symmetric DC SQUID. (open
square)- I2/I1 = 0.3; (left corner open triangle)- I2/I1 = 0.5;
(solid star)- I2/I1 = 2; (solid circle)- I2/I1 = 3.3; (solid
triangle)- I2/I1 = 10.

For two of the SQUIDs with such high modulation val-
ues shown in Figure 7a, some more data were still avail-
able (the two 24◦ SQUIDs at Imax = 55 and 90 µA,
respectively). With the flux shift ∆Φ between the VFC
at positive and negative bias, using the well-known re-
lation ∆Φ = L(Ic1 − Ic2), a current asymmetry of ξ =
(Ic1 − Ic2)/(Ic1 + Ic2) = 0.16 is determined for both
SQUIDs. Together with their noise parameter of Γ = 0.06,
corresponding to the results in [6], a voltage modulation
enhancement of about 10% is originated, which could ex-
plain the position of these two points in Figures 7a, b.

5 Conclusion

We have shown in the paper that the significant reduction
of the voltage modulation in high TC DC SQUIDs, which
lie well below the theoretical predictions and computer
simulations based on conventional sinusoidal CPR, can be
explained by the presence of relatively large amplitude of
a second harmonic in the junction CPR.

Although, the existence of second harmonic in high TC

grain boundary junctions follows from the theory [8–10],
and there exist some mechanisms (phase fluctuations be-
tween d- and s-wave pairing; faceted structure of grain
boundary) that can enhance the contribution of second
harmonic [23,24], up to now a reliable evidence of substan-
tial second harmonic was observed only in [001]-tilt grain
boundary junction with 45◦ and 30◦ asymmetric misorien-
tation angle [12–16]. Therefore, we cannot rule out other
mechanisms, which lead to the reduction of the voltage
modulation in high TC DC SQUIDs.

For an unambiguous clarification of the parameters
influencing the voltage modulation, a directed manufac-

turing and analysis of high TC DC SQUIDs would be
deserving.

The authors are grateful to Evgeni Il’ichev and Miroslav Gra-
jcar for fruitful discussions. The work is partly supported by
INTAS Program of EU under grant 2001-0809.
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